

Information: 2023-01-20

Syllabus for Advanced Steel Engineering Course for PhD students

LTU, KTH, Chalmers, LTH

Course credits: 7.5 ECTS

Course dates:

Session 1	Luleå	1 st & 2 nd of March
Session 2	KTH	4^{th} and 5^{th} of May
Session 3	Chalmers	15^{th} & 16^{th} of June

Course Teachers

Mohammad Al-Emrani	(MA)
Mikael Möller	(MM)
Bert Norlin	(BN)

Session 1	1 st & 2 nd of March, 2018
Location:	Luleå University of Technology

Teachers: Mikael Möller (MM)

General notes about this session:

1. During the lectures teacher will give you some numerical examples that should be solved during the lectures therefore you should have a calculator with you.

2. In order to pass the course, st

students will need to solve numerical assignments, for this part of the course, provided by Mikael Möller. The assignments can be solved in group of two students and send to the teacher and cc to Mohammad.Al-Emrani@chalmers.se, until **April 2nd**.

Course contents:

Thursday, March 1st:

10:00-10:15	Gathering and coffee
10:15-10:30	Welcome, course planning and presentation of participants (MA)
10:30-12:00	 Basic constitutive modelling-1 (MM) Typical stress-strain curves for different steels von Mises & Tresca yield criteria the concepts of plastic potential, normality, convexity & consistency isotropic & kinematic hardening more advanced hardening models a stress-driven constitutive model based on isotropic hardening
12:00-13:00	lunch
13:00-13:45	Basic constitutive modelling-2 (MM) - analytical solutions to some classical multi-axial elasto-plastic constitutive problems - exercises

13:45-13:50 short break

13:50-15:00 Limit analysis-1 (MM)

- Requirement on deformation capacity
- Principle of virtual work
- Lower bound theorem of plasticity
- Upper bound theorem of plasticity
- Slacking the requirements on equilibrium & compatibility
- 15:00-15:30 Coffee break

15:30-18:00 Limit analysis-2 (MM)

- Energy methods & equilibrium methods
- Yield hinge method for indeterminate beam structures
- Yield line method & strip method for plates
- The concept of limit resistance interaction
- Some useful limit interaction relationships

18:00-18:30 Social gathering

18:30 **Dinner**

Friday, March 2nd:

09:00-11:30	 Limit analysis-3 (MM) Convexity and normality of deformations to the limit interaction surface Finite element limit analysis Normative references
11:30-12:30	Lunch
12:30-14:30	 Shakedown analysis (MM) The concept of shakedown and progressive deformation Shakedown theorems The fundamental mechanics of progressive deformation The Bree-diagram Progressive deformation in piping Finite element shake-down analysis Normative references

14:30-15:00 Break

15:00-17:00 Limit analysis interactions of combined loading (MM)

- Axial force + bending of rectangular section

- Axial force + strong axis bending of H-beams
- Axial force + strong axis+ weak axis bending of H-beams
- Axial force + bending of tubes
- Axial force + internal pressure of tubes
- Internal pressure + bending of tubes

Session 2	4 th and 5 th of May, 2023	
Location:	KTH	
	BROBYGGNAD INKL STÅLBYGGNAD	

Teachers: Bert Norlin (BN)

General notes about this session:

1. During the lectures teacher will give you numerical examples that will refer to EN1993-1-1, part1-5 and part 1-8. It would be good to have these codes with you. Let me know if you need them.

2. In order to pass the course, students will need to solve numerical assignments, for this part of the course, provided by Bert Norlin. The assignments could be solved in a group of two students and send to the teacher (and cc Mohammad.Al-Emrani@chalmers.se). Deadline 5^{th} of June.

Course contents:

Thursday, May 4th

10:00- 10:15 Gathering and coffee

10:15-12:00 Stability of columns, beam-columns and plates (BN)

- General about classic theory, behaviour and design
- General method for lateral and lateral-torsional buckling of structural components

12:00-13:00 Lunch

kl 13:00-kl.14:50 Beams and girders (BN)

- Interaction formulae in EN 1993-1-1 – background and simplifications

kl 15:00-kl.16:30 **Beam-columns (BN)**

- Bending and axial resistance of sections in class 4
- Shear resistance
- Interaction shear and bending

kl. 18:00 Dinner

Friday, May 5th

09:00 - 10:00 Stability Design with FEM (BN)

- 10:10 11:00 Connections (BN)
 - Basic failure criteria for bolts
- 11:10 12:00 Design models for bolted and welded connections (BN)
 - Design models according SS-EN11993-1-8
- kl. 12:00 -13:00 Lunch

13:00 - 14:20 Rigid and simple connections (BN)

- Design models for rigid connection and moment free connection, typical examples

14:30 - 16:00 Semi rigid connections (BN)

- Classification of connections according to SS-EN1993-1-8
- Structural modelling of connection

Teachers: Mohammad Al-Emrani (MA)

Thursday, June 15th

10:00-10:15 Gathering and coffee

10:15-11:45 Fatigue of metals

- The nature of fatigue damage process
- Fatigue crack initiation and propagation
- Representation of fatigue data definitions
- Factors affecting the fatigue strength of metals

12:00 Lunch

13:00-15:00 Fatigue of welded details

- Fatigue damage in welded details
- Fatigue design concept (Eurocode)
- Fatigue design variable amplitude loading (Palmgern-Miner)
- Fatigue strength of basic weld details
- Fatigue strength of some bridge details
- Examples and exercises

15:00 - 17:00 Fatigue assessment with local approaches

- Hot Spot Stress Approach
- Effective Notch Stress Approach
- FE-modeling for fatigue assessment hints and recommendations
- Practical examples

19:0 **Dinner**

Friday, June 16th

09:00-11:45 Fracture mechanics applied to fatigue

- Historical overview
- Brittle failure in fatigue loaded structures
- Factors affecting the risk for brittle failure (steel type, Size and notch effects, temperature and loading rate)
- Measuring "material toughness"
- Fatigue crack growth under constant and variable amplitude loading
- Linear and nonlinear fracture mechanics (FM)
- Examples of the application of FM in fatigue analysis and design

12:00 Lunch

13:00-14:00 Fatigue-life improvement techniques

14:00 - 16:00 Fatigue damage in steel Bridges

- Deformation controlled fatigue cracking
- Learning from failure

Mohammad Al-Emrani Department of Architecture and Civil Engineering Chalmers University of Technology Sven Hultins gata 6 412 96 Göteborg - Sweden Tel: 031-772 22 58 mobile: 0737 259 553 E-mail: Mohammad.Al-Emrani@chalmers.se

